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We find that by using a quantum crystal formalism the relatively small 
anisotropic molecular interactions in hydrogen can resolve the large 
discrepancy between the experimental equation of state and several 
recent theories in the solid phase at high pressure. This does not 
require the introduction of any new intermolecular potential. 

THERE ARE several recent theoretical calcula­
tions 1-4 of the equation of state for solid Hz. 
These use quite different formalisms, reference 1 
being a semi-classical harmonic calculation while 
reference 2 is a Monte Carlo variational calcu­
lation; reference 3 is a quantum crystal cluster 
expansion and reference 4, a self-consistent 
Green's function method. These theories agree 
in the high pressure (P ~ 1Q3 atm) regime which 
indicates that for some purposes (e.g. calcula-
tion of the ground state energy E) short-range 
correlations between molecules can be ignored 
at high pressure as in reference 1 without invali­
dating the calculation. In view of the consistent 
results of references 1-4, it would seem that one 
can calculate the equation of state of molecular 
hydrogen quite well and thus predict the molecular 
solid-metal phase transition 5 and apply the result 
to various astrophysical problems 6 in a range of 
pressure where experiments are difficult to perform. 
Unfortunately, even with P rv 10 4 atm there is a 
large discrepancy between the theories listed 
above and measurements 7 of the PV curve near 
zero temperature. If we believe the experiments 
are reasonably accurate, then the most likely 
source of the disagreement is the inadequacy of 
the two-body potentials B which are obtained 
empirically from measurements on gaseous Hz. 
Needless to say, the introduction of a potential 
wi th new parameters cannot lead to any better 
understanding of the physics in the problem. The 
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purpose of this letter is to incorporate the aniso­
tropic part of the intermolecular interaction 'Vani 9,10 

into our previous formalism 4 and to demonstrate 
that this can remove the discrepancy between 
theory and experiment for the ground state energy 
and pressure of molecular hydrogen within the 
framework of the present understanding of the 
interaction. 

Even at relatively large molar volumes corres­
ponding to a nearest neighbor distance a rv 3.7 A, 
Vani is large enough to have a substantial effect 
on a given .pair of molecules in certain relative 
orientations; 10 however, it has a small effect 
when averaged over many particles localized at 
lattice sites. 9 Several 3, 5,11 attempts have been 
made to include 'Vani in calculations of E; Neece, 
et al. 5 treat th·~ melecules claSSically, giving 
them several particular orientations. In reference 
3, on the other hand, they are treated quantum 
mechanically but are not allowed to be in angular 
momentum states l .j O. Such states are used in 
reference 11, but the molecules are otherwise 
treated as classical point particles placed on 
lattice sites. In the present work, we use a totally 
quantum mechanical approach, allowing both 
motion of the center of mass of the melecules and 
angular momentum states 12 l > O. 

The potential between two Hz molecules de­
pends on the displacement r = r 1 - rz between the 
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centers of mass of the molecules and on the direc­
tions of their axes. We shall write it as 

(1) 

I' =0.2 

where w, and W 2 describe the orientations of the 
molecules relative to the crystal c-axis (h.c.p. 
structure is assumed) and Yl is the spherical 
harmonic YlO ; 'yOO /41T is the isotropic potential 
y (r) which we shall take as the empirical modi­
fied Buckingham (E - 6) potential 13 

{~/ r~· exp[a(l-r/rm)] -(rm /r)6], 1'> rmax 
VCr) = 1-6 a a 

00 , r< rmax 

where Eo = 38.02 K, rm = 3.339 A, a = 14, and 
rmax/rm = .20319. 

The anisotropic parts y20 and y02 are taken 
to be the first terms in Nakamura's expansion of 
de Boer's potential, 

20 0 2 81T[ -(r-ao)/ p tao\S] 
y = y =S{:3,e -(:32\7J P2(cos(1,z) 

(2) 

with (3 , = 2.6 K, {:32 = 1.6 K, P = .283 A and a o = 
3.75 A; (1 lZ is the angle between r and the c-axis 
while PI is the Legendre polynomial of degree l. 
For y22 the dominant term is the electric quad­
rupole-quadrupole interaction, 

In our earlier work 4 we calculate the single 
particle wave function ¢.(I,w,) localized around 
lattice position Ri using a self-consistent poten­
tial field Ui (1). A straightforward extension of 
this theory leads us to expand ¢i as 

¢i(I,w,) = Yo (w,)¢o i(l) + Y2(W,)CP2i(1) (4) 

while 

u'i(l,w,) = Yo (w')Yo(wJuoi (I) + Yo (w,)Y2 (w,)u 2i(l) 

(5) 

is the self-consistent field; U o and U z are written 
in the harmonic approximation by expanding 

ui(l,w,) = L. S V(r,w"w2) Xij (1,2,w"w2) 
J'#> 

l¢j(2,w2)1 2 d 3 ,z dW2 (6) 

to second order in the displacement 1 r ,- Ri I. 
Here Xij is the correlation function for particles 
1 and 2; it is expanded as 

,,' Zl' Xij = 41T L... Xij (12)Yz (w,)Yz, (w 2) (7) 
z,Z'=O,2 

and is found from the equation 

(8) 

Hij = _(V,2 + 'V22)/2m + l,(l, + I)B/ + l2(lZ + I)B/ 

+ V(r,w"w z) + U;(I,w,) + Uj (2,w z) + ().ij (1,2) 

-[JXi/1,2,w"wz) V\r,-rz ,w,,(2)1 ¢Hl,W)1 2 d 3r;dw, 
+ fXi/1,2,w"Wz)V(r,-rz ,w,,(2 )1¢f(2,wz)I Z d s-r2 dwz ] 

(9) 

where BI = 1/21 = 87 K, I being the moment of 
inertia of the hydrogen molecule. The term ().' j 

contains some effects of three-body correlations; 
it is approximated 4 by Pij (r'2 - Rij) where Pij 
is a constant such that the condition 

JXij (1,2, w"w2)R W (r - Rij)l¢i (l,w,)!, 

l¢j (2,w 2)12 d 3 r, d 3
'2 dw,dw 2 = 0 

is satisfied. Also, "'0 is chosen to give physically 
reasonable behavior of Xi j for r, 2 .... 00. 

In reference 4, where V(r;w"w2) consists 
only of VOO , equations (6) and (8) plus the 
Schrodinger equation for ¢i are solved simultan­
eously. In the present work, equation (8) is 
decomposed into four equations; it is very dif­
ficult to solve the resulting set of equations 
self-consistently. We have determined X i j to 
first order in y20 / B/ and V 22 

/ B/ which is ade­
quate for V ~ 10 cm 3; this volume is also the 
smallest reported by Stewart. 7 

Xi~ 2 = - Xir; (¢2 j/¢Oj + 'Vo2 /241TB/ ) 

xtJ = - X:rJ (CP2dcpOi + 'V 20 /241TB/ ) 

22 00 V22/48 Q_ Xij = -Xij 1T~ (10) 

where X: is the correlation function of reference 
4. Using equation (10), we solve equation (6) and 
the single-particle Schrodinger equation self-con­
Sistently. It is then easy to find the crystal 
energy per particle, 

E =J ¢7(I,w,) (-'V,2/2m+u;(I,w,)/2)¢i (l,w,)d 3 r,dw, 

+ 6B, J ¢~i(l) d3 r, (11) 


